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A BIHARMONIC RELAXATION METHOD FOR CALCULATING THERMAL STRESS IN C

OOLED

IRREGULAR CYLINDERS!®

By ArtETR G. HoLus

SUMMARY

A numerical method was dereloped for calculating thermal
stresses in irregular cylinders cooled by one or more internal
passagex. The use of relaxation methods and elementary meth-
ods of finite differences was found to give approximations to the
correct values when compared with previously known solutions
for concentric circular cylinders possessing symmetrical and
asymmetrical temperature distributions.

INTRODUCTION

USE OF COOLED IRREGULAR CYLINDERS

The evolution of aireraft propulsion systems has led to the
frequent employment of cooled structures. The concentric
hollow cylinder is a familiar example, although in some cases
irregular cylinders such as cooled turbine blades with several
internal passages (reference 1) are under consideration. A
method of calculating stresses in thin-walled turbine blades
of the air-cooled type is presented in reference 2, but the
general problem of caleculating thermal stresses in long,
hollow, thick-walled irregular cylinders has not been solved.

PREVIOUS WORE ON THERMAL STRESSES IN HOLLOW CYLINDERS

Several methods of calculating thermal stresses for various
special distributions of temperature in long hollow cylinders
of particular shape have been developed. Some theoretical
aspects of the general problem have also been discussed. In
reference 3 the problem is regerded as an ordinary stress
problem with given body and surface forces replacing the
effects due to temperature distribution, whereas in reference
4 the equilibrium and boundary conditions of the theory of
elasticity are used without modifications to exhibit the tem-
perature effects as body and surface forces. The method of
reference 4 was applied to several special problems that had
already been solved as well as to problems of composite
bodies and eccentric circular. cylinders. No application
of analytical or numerical methods of calculating thermal
stresses in cooled irregular multiply connected eylinders has
been published.

SCOPE OF PRESENT INVESTIGATION

An investigation was conducted at the NACA Lewis Iab-
oratory during 1949-50 to calculate thermal stresses in cooled
irregular multiply connected eylinders. The problem of ther-
mal stresses in irregular cylinders is formulated in & manner

that permits solution by the use of finite-difference methods.
The contour integrals of reference 5 expressing the single-
valued character of the displacements for arbitrary circuits
around the internal boundaries are written in forms suitable
for numerical methods of differentiation and integration.
The boundary conditions based on the assumption of force-
free boundaries and single-valued displacements are formu-
lated in terms of derivatives of the stress function as sug-
gested for uniform-temperature problems in reference 5, and
stress functions are set up in a manner that is an extension
to the thermal-stress problem of the work of reference 6 on
doubly connected domains at uniform temperatures. The
relaxation techniques of reference 7 are used in solving the
finite-difference problem of determining the stress functions.
Details of the method are illustrated by examples. The
method is applied to a symmetrically heated, hollow circular
cylinder and also to a hollow circular eylinder with asym-
metrical heating to show that the relaxation technique gives
approximations to exact answers obtained by direct math-
ematical methods. Comparison of stresses esleulated by
the relaxation techniques with those determined by exact
methods is also made to compare the relative importance of
several sources of error. The caleculations for the concentric
cylinder are described in detail sufficient to permit the method
to be applied to more irregular cylinders.

SYMBOLS
The following symbols are used in this report:

@n,02,a; constants of integration

E modulus of elasticity in tension and compression

Im direction cosines of normal drawn outward from
region bounded by plane curve

n distance in xy-plane normal to plane curve

Q residual in relaxation calculation

r,0 polar coordinates

8 are length of plane curve in xy-plane

T temperature above initial stress-free state

w00 components of displacement

x,Y,2 rectangular coordinates ]

o coefficient of linear thermal expansion

YaryYr2Yy: Shearing strain components in rectangular coordi-
nates

€2,€0,E2 unit elongations (strains) in x-, y-, and z-direc-
tions, respectively

v Poisson’s ratio

l Supersedes NACA TN 2434, “A Biharmonie Relaxatfon Method fur Calculating Thermal Stress in Cooled Irreguler Cylinders™ by Arthur G. Holms, 1951.
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65,04,0s  DNormal components of stress parallel to z-, y-,
and z-axes, respectively
Tey shearing-stress component in rectangular coordi-
nates
¢ Airy’s stress function
w component of rotation about z-axis
. b . o2 9
% armonie operator —b—x§+a_y7 R
‘ biharmoni & 192
A armonic operator &;-l- m—,-}-—a?
THEORY
ASSUMPTIONS

The following conditions are assumed to exist:
1. Steady-state heat flow exists with temperatures uni-
form along any line initially parallel to the axis of the cylinder.

2. Heat sources and sinks are assumed to be distributed

on the external and internal boundaries.

8. The temperature distribution is assumed to be deter-
mined by the boundary temperatures and Laplace’s equation.

4, The material behaves in an elastic manner.

5. The variation of the elastic constants (modulus of
elasticity, Poisson’s ratio, and coefficient of thermal expan-
sion) with temperature may be neglected in determmmg
the thermal stresses. '

8. Plane sections initially normel to the axis of the cylm-
der remein plane.

7. The strains and rotation are conmstant along any line
initially parallel to the axis of the cylinder.

The extent to which a particular structure would fulfill
these conditions would depend on the particular circum-
stances. The last two assumptions are appropriate when
the cylinder is long in comparison with its cross-sectional
dimensions or when end conditions impose suitable restraint.
The sixth assumption allows bending of the cylinder about
axes perpendicular to the axial direction of the cylinder in a
manner that might vary in the axial direction. The last
assumpt.lon permits planes mltlally perpendicular to the
axis of the cylinder to take on a warped shape as a result

of the deformation but restricts the bending to a circular .

arc; that is, the radius of curvature of lines initially parallel
to the axis of the cylinder does not vary along the length of
these Iines. The assumption of no variation of rotation in
the axial direction is equivalent to assuming that the eylin-
der does not twist. )

BASIC EQUATIONS

The case of plane strain where body forces are given by
the gradient of a potential is treated in reference 5. As
shown by the detailed derivation in appendix A, the govern-
ing equation of reference 5 applies to the thermel-stress
problem defined by the preceding assumptions. This equa-
tion is

Véig=0 ' 1)

where ¢ is Airy’s stress function defined by
. o
Gz—a—'yz W
ai
=t | @)
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00y J

Tay=——

As shown in appendix B, the axial stresses can be calculated
from the equation

6:=E'(a~’¢+b?/+6)+1'(0'z+dy)—dET (3)
BOUNDARY CONDITIONS

Two basically different types of auxiliary condition are
established for the set of physical conditions assumed to
exist. These conditions are:

(1) Conditions stemming from the nature of the forces
applied to the surfaces

(2) Conditions stipulating that the displacements be
single valued

In calculating the stresses due to the temperature distri-
bution, other stresses such as those due to centrifugal force
and fluid pressure are to be calculated separately and the
total stresses are to be obtained by superposition. All in-
ternal and external boundaries are therefore postulated to
be free from applied forces, and the boundary conditions
(reference 8, p. 21) become

o:l+tr,m=0
} ’
Toltoym=0

where __

Substitution from equations (2) into equations (4) yields

0% dy+ % dz
dyfds ' ozdy ds

% dy , 2%¢dx

dzdy ds ' dxids 0

from which
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along the boundaries.
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CONDITIONS FOR SINGLE-YALUED DISPLACEMENTS
The defining equations for strains and rotation are

ou h

>~ 6
bu, o0 ©

w_{bx by)

From equations (6),

- (7

0w _10vy O¢;
dz 2 oz dy

0w 13y, O¢
oy 2 dy 'Oz J

The change in rotation for an arbitrary path P; of inte-
gration starting at some point (zo, %) and returning to the
same point after enclosing (a.nd only enclosing) the internal
boundary C; is

[I gSP‘dm— P‘axd +a_y dy ®

From equations (7) and (8), the condition that « be
single valued is
alo

- 107y 06 10,
[~ [GF-5) 1=+ (=555

By use of equations (A12) and (A13) of appendix A, eque-
tion (9) may be written

§ BV’qbd
P; O

The change in the z-component of displacement for an
arbitrary path of integration starting at some point
(7, ¥o) and returning to the same point after enclosing the
internel boundary C; is

[I 95 du= Piaudz+aydy (11)

al £ oT
1—>» P‘an

s—ds (10)

From equations (7) and (11), the condition for single-
valued u is

§Pi e,d:l:—[—(% 'y,,—w)dy=0 (12)

For the term involving rotation in equation (12), inte-
gration by parts gives

—ﬁ:‘w dy=—|:coy:[:-l—g);i y de
]

because of the single-valued character of o achieved by
imposing equation (10). Furthermore,

éﬂycﬁ::g) Y bxdr_[_bydy)

Equation (12) ean now be written

where

P,y 2 oz

?P e;dx+—;-fy,,dy+—1-yaﬁdr—
i
ae, 07z

In equation (13}, integration of the first two terms by parts
gives

95Pi(q=dz+%'rndy)=[:re.— +—21- :tmr:.:[:—
P,,x(55 a+5y 0) 58, v (F2ds+30ar)

[eJerm]o

because the strains are smgle valued. Equation (13)
becomes

95 (-v55-
P, by

Substituting from equations (A12) and (A13) of appendix A
and stipulating that the stresses are single valued give
equation (14) as

where

)dx+g) ( ya’Y" a—e'—:c—g—;f dy=0

(14)

oVip d‘\7’¢ ar
95 Y2r "% ds 9515 ( "E;)d*"'
1 £ d ¢
1—vJr,ds S—ds @
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If the integrations of equation (15) are performed along
the internal boundary €, then from equations (5),

1 d 2¢
l—vﬁc‘ds bzd §=0

Beécause the integrand of the preceding integral is an exact
differential, the integral has the same value (zero) for all
reducible paths hence for the arbitrary circuit P, equation

(15) becomes
V4 dv2¢ 56 ( gl_l_')
f‘ﬁ Yon )d = l—v P, s ds  (16)
Similar reasoning from the single-valued character of the
y-component, of displacement leads to the equation

G s ) e S NG s

Equations (10), (16), and (17) are similar in form to some
equations derived by Mindlin in reference 9. The equations
of that reference apply to integration paths taken along the
boundaries.

BOUNDARY CONSTANTS

The initial objective is to determine the stress function
¢ so as to solve the boundary-value problem associated with
equation (1). Numerical differentiation could then hbe
performed to determine the stress components according
to equations (2).

The assumption of stress-free surfaces resulted in equations
(5). With a; and ey as constants of integration these
boundary conditions may be mtegrated to give anng the
boundaries . i - .

(18)

In general,
d¢=g—i’ dx +g§dy

and where @5 is a constant of integration, integration of the
pxecedlng equation along a boundary and use of equations
(18) give

¢t=an9«'+afz’!]+ats (19)
along a boundary.

Differential equation (1) and boundary conditions, expres-
sible by equations (18) and (19), do not completely determine
the stress distribution. No temperature terms are present,
and the values of a4, @, and a4 are still to be specified. The
initial step in obtaining the compatibility condition (equation
(1)) was to raise the order of the first differential equation of
equations (A2) by differentiating once with respect to # and
once with respect toy. These differentiations, although use-
ful in simplifying the final form of the equation, require that

additional factors be considered. In the case of multiply
connected regions, the resulting equation (equation (1)) does
not preclude the oceurrence of stress distributions due to
mechanical dislocations (reference 9). The occurrence of
mechanical dislocations is eliminated by imposing conditions
that rotation and displacements be single valued. These
conditions are to be used in evaluating the constants of
equation (19). The physical conditions of the problem will
then be satisfied, for the stress function has been defined so as
to satisfy the equilibrium conditions; the compatibility con-
dition is satisfied by the use of biharmonic functions; tho
assumption of force-free boundaries is satisfied by conditions
(18) aud (19) on the stress function; and the constanis a,,
&g, and g, are to be evaluated so as to satisfy the conditions
of single-valued rotation and displacements. That adjust-
ment of the values of @1, @4, and ay is sufficient Lo satisfy the
conditions of single-valued rotation and displacements will
become evident in the next section. A method of determin-
ing the constants that will be appropriate for numerical
techniques is needed.

DETERMINATION OF BOUNDARY CONSTANTS BY FORMATION OF SPECTAL
SOLUTIONS

A method of using special solutions to determine ay, a4,
and ay for a doubly connected domain at uniform tempera-
ture was described by Prager (reference 6). A similar
method was suggested for the multiply connected domain
by Southwell (reference 10). The method of Prager is here
extended to domains with more than one hole and with tem-
perature distributions present. The method is then modified
to a form that is suitable for numerical techniques.

Let ¢4G=1, 2, ...k ...n =1, 2, 3) be special
solutions of equation (1) that are defined over the domain
bounded by the external contour & and the internal contours
C, Cy...C,...Ch Because equation (1) is linear,
the products of the ¢4 and the arbitrary constants ay
may be superimposed to give the complete solution of lhe
boundary-value problem according to the scheme .

¢=éé G131 (20)

provided that the boundary conditions for the ¢,; are properly
selected and that the values of the boundary constants ay are
properly evaluated.

The boundary conditions for the ¢y must be selected so
that the function given by equation (20) will satisfy equations
(18) on all the boundaries. Because the stresses are given
by second derivatives of ¢, the addition of a linear function
of the coordinates to ¢ will leave the stresses unaltered. The
assumption is now made that this addition is accomplished
so that the boundary constants of equations (18) and (19)
are zero on the external boundary. The boundary conditions
on the ¢ for the external contour C, are therefore taken as

&y j-—bd’u 0on Oo
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The boundary conditions for the ¢, on the internal bound-
aries must now be selected so that 3n linearly independent
solutions for the ¢,; will be obtained and so that the funetion
defined by equation (20) will satisfy equations (18) on all the
internal boundaries. This selection "is accomplished as
follows:

Let
pu=u1—g (21)
on all boundaries except (. On (Y, let
=1 b¢“=§_z; 22)
$r=Y a:,f’ g—: 23)
brs=1 a—a‘*;lﬁ—o (24)

Certain geometrical aspects of the choices expressed by
equations (21} to (2Z4) are now mentioned. The observation
is made, for example, that the equation

a¢u dy
2n ds

is a restriction on ¢ in addition to the restriction of ¢u=2z
on (7, inasmuch as ¢ =1 prescribes values of ¢, only on the
line defining the boundary Ci, whereas the normal derivative

Odu_ dy
dn  ds

specifies the rate of change of ¢u as the boundary is crossed
in a direction normal to the boundary.

The slope of the plane ¢y == in & direction normal to the
contour (Y is Oy /On; but because ¢u==2 for this plane, the
slope may be written as dz/dn. In the direction =, the slope
of the surface ¢y is given by equation (22) as

aqf’u _dy
T ds
but in the zy-plane,
dy_ 0z
ds on

Therefore, in the direction of n, the slope of the surface ¢n
(in equation (22)) has been taken equal to the slope of the
plane ¢ =2 and because the intersection €’; of the cylinder
through €, with the surface ¢u lies in the plane ¢n=z, the
surface ¢y is tangent to the plane ¢n=2 along C’;. The
particular solution an¢: therefore defines a surface tangent
to the plane ¢y=anz. Equations (23) require that ¢ be
tangent to the plane ¢p=y along the intersection C’’; of the
cylinder through ¢, with the su.rface é12, and equations (24)

require that ¢ be tangent to the plane ¢n=1 along the

mtersection C’’’; of the cylinder through (., with the

surface ¢,

The three special solutions, Gu¢u, Crdw, and audi, asso-
ciated with C} are seen to be tangent to three planes, one of
which passes through the y-axis, one of which passes through
the r-axis, and one of which is parallel fo the zy-plane.
Determination of @u, @i, and au is seen to be equivalent to
determining the slope of the plane through the y-axis, the
slope of the plane through the r-axis, and the height of the
plane parallel to the zy-plane. Superposition acecording to

=Auout bt tnds

is thus seen to satisfy the requirements of equations (18)
and (19), but the constants @u, ¢w, and axm must be properly
chosen. Superposition of all the a,¢,; will still leave equa-
tions (18) and (19) satisfied on C; because of the requirements
laid down on all the ¢ by equation (21).

The ¢;, were defined as special solutions of equation (1},
which is equivalent to writing

v4¢u = 0

(i=1,2, ...k ...n;j=1,2,3) (25)

Equations (25) together with boundary-condition equa-
tions (21) to (24) constitute 3n boundary-value problems for
the 3n particular solutions ¢,;.. These individual boundary-
value problems with ¢4 and 9¢,/0n specified on every bound-
ary are now to be solved by methods already described by
Fox and Southwell (reference 7). With the assumption that
the ¢, are so evaluated, the next step is to caleulate the
values of ay.

The method for determining the a,; may be symbolically
expressed by substituting the complete integral as expressed
by equation (20) into the contour integrals of equations (10),
(16), and (17). This substitution requires that, on each kth
integration path (enclosing the £th internal boundary), con-
tour integrals involving all the ¢;; be formed as coefficients
of the @, Formation of these contour integrals then
permits writing simultaneous equations for each £th boundary
(k=1, 2, . . . n) so that 3n equations are obtained for the
a,; where the contour integrals involving the ¢, become
coefficients of the a:

OViyy ; __ oFE ol
=1 f?_'l‘ H ?Ps 4 on ds (26)

1—» Py

3 b (2 ATy
g =1 Qs § Py on ds ds

__ 1—vfﬁp,,< x%)ds @7)

3 ugﬁ ( y T, aV°¢:J)d
1 j=1 Py

l—vé (st-[—-xaf)ds (28)
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Because there are exactly 3n equations with exactly 3n
unknowns (t.lle a;), the determination of these constants is
sufficient to insure the occurrence of smgle-va,lued rotation
and displacements.

NUMERICAL TECHNIQUE

The purposes of this section are (1) to illusirate, by a
concrete example, the detailed steps by which a solution of
a problem may be obtained, (2) to show, by comparison
with & problem for which the solution is already known, that
the application of relaxation procedures to the finite-
difference method outlined in the preceding part of this
report yields a method giving results that approximate the
correct answers, and (3) to present the results of an investi-
gation of some factors affecting the accuracy of the answers
for some particular conditions encountered in the relaxation
solution of a thermal stress problem.

ILLUSTRATIVE EXAMPLE

The detailed instructions enabling the relaxation calcula-
tion of thermal stresses in an irregular cylinder are presented
in appendix C. The particular problem illustrated is that of
a concentric circular cylinder possessing an asymmetrical
temperature distribution; however, the description of method
may be applied to cylinders of more complex shape. The
choice of the concentric circular cylinder enabled the relaxa-
tion work for the stress functions to be confined to a. 90°
sector. There would be no fundamental distinction in carry-
ing out the calculations for an irregular profile—relaxzation
would merely have to be performed over the entire cross
section entailing more labor. (Although circular bound-
aries were involved, the advantages of using polar coordinates
were not utilized. The use of rectangular coordinates in the
presence of circular boundaries involves boundary technique
problems typical of a more irregular region.)

The results of the relaxation calculation (reference 11)
according to Laplace s equation for the temperature distribu-
tion are presented in figure 1. Results of relaxation cale-
ulations for special solutions of the biharmonic equatmn are
presented in figures 2 to 4. Contour integrals were calculated
as illustrated by table I and the stress function is presented
in table II. Tangential stresses (table II) were calculated
by computing the second derivatives of the stress function
with respect to radius (reference 8, p. 53) according to the
five-point method of reference 12 described in appendix D.

Exact values of radial and tangential stress were calculated
as indicated in appendix E and are also listed in table II.
The maximum tangential stress is seen to be much larger
than the maximum radial stress. The error in the relaxation
calculation of the maximum tangential stress was about &
percent. Comparison of the values of tengential stress
calculated by the exact method with values calculated by
the relaxation method is also presented in figure 5.

INVESTIGATION OF FACTORS AFFECTING ACCURACY

Several factors influencing the accuracy obtainable in
calculating thermal stresses by the method just described

were investigated by applying various calculation techniques
to a problem for which answers could be calculated by exact
mathematical methods. The example chosen consisied of u
concentric cylinder subjected to & symmetrical temperature
distribution. Details of the relaxation calculation are pre-
gented in appendix F.

The results of the relaxation calculation for the tempera-
ture distribution are presented in figure 6. Because dimen-
sions of the cylinder were exactly the same as those of the
llustrative example previously discussed, the special solutions
&1, b1z, and ¢ determined in that example are usable in the
present example., This situation illustrates an important
feature of the use of relaxation methods in caleulating thermal
stresses; that is, once the time consuming biharmonic relax-~
ation work for the special functions ¢y, ¢5, and ¢4 has been
completed for a given shape of body, relatively little extra
work is required to study the effects on thermal stresses of
changes in temperature distribution.

For the symmetrical temperature distribution of figure 6,
the boundary constants a;; and a, were_found to vanish.
The values of a5 for the paths g, b, and ¢ of figure 4 are pre-
sented in table III. The Airy stress function and the stresses
calculated from it by numerical differentiation according to
appendix D are listed in table IV.

Exact. values of Airy’s stress function were calculated
according to appendix G. The value of the arbitrary con-
stant D in equation (G4) was adjusted to give ¢=0 for
r=12. Results are listed in table IV. Second derivatives
of the exact values of Airy’s stress function were then cal-
culated by, the numerical methods of appendix D to give the
tangential stress values listed in table IV. Exact values of
tangential stress were calculated using the second of equa-
tions (E1) and are also listed in table IV.

Compérison of the errors in tangential stress of table IV
shows that the errors associated with the numerical differ-
entiation of the relaxation-calculated Airy function were

| much larger than those associated with the numerical dif-

ferentiation of the exact Airy function. (Errors in the max-
imum stress were 21.5 and 6.5 percent, respectively.) This
comparison suggests that the relaxation-calculated Airy
function was an important source of error.

The relaxation-calculated stress function was calculated as
the product au¢is (appendix F). An exact value of ai
was calculated by observing that the exact values of ¢ in
table IV range from zero at r=12 to —467,627 at r=4;
whereas. in. figure 4 the values of ¢;; range from zero at
r=12 to 1000 at r=4. The exact value of ay, is therefore

_—467,627
0/13———1000 =-—467.627

As indicated by the data of table ITI, the errors associated
with the processes of integrating difference quotients to cal-
culate the boundary constants can be significant but are
small if the calculated values of the boundary constants are
averaged over several paths.
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The extent to which errors in the relaxation calculation of
the Airy function influence errors in the stresses was evalu-
ated by rounding off the previously determined exact values
of Airy’s stress function to three significant figures. Corre-
sponding stresses and errors are presented in table IV. In
general, the errors associated with the three-figure Airy func-
tion are seen to be significantly lower than those associated
with the relaxation-calculated Airy function. Apparently,

the equivalent of three-figure accuracy was not achieved in

the relaxation calculation of the Airy function. Compari-
son of the values of tangential stress calculated by the exact
method with values calculated by the relaxation method is
also presented in figure 7. Improved accuracy could be
accomplished by (1) further reduction of residuals with the
introduction of another significant figure, (2) the use of &
finer net spacing, (3) the use of more elegant finite-difference
methods, or (4) some combination of (1), (2), and (3). A
eritical discussion of some factors influencing the accuracy
of relaxation procedures is contained in reference 13.

CONCLUDING REMARKS

This investigation has yielded & numerical method for cal-
culating thermal stréss in a cooled irregular cylinder posscss-
ing one.or more cooling passages under steady-state temper-
ature conditions. Application of the method to siructures
such as internally cooled turbine blades is suggested. The
use of relaxation methods and elementary methods of finito
differences has been found to give approximations to correct
values when compared with previously known solutions for
concentric circular cylinders possessing symmetrical and
agymmetrical temperature distributions.

Lewis Friear PropuLsioN LABORATORY
Natronarn Apvisory COMMITTEE FOR AERONAUTICS
CreveELanD, Onro, May 10, 1951

APPENDIX A
DERIVATION OF BIHARMONIC EQUATION

An outline of the derivation of the governing partial
differential equation for the stress function is given in refer-
ence 4. A detailed derivation using the conditions imposed
in the section on assumptions follows: -

The defining equations for the normasl strains (reference 8,
p. 7) are

21{-\
=z
o}
e,=3§ - (A1)
2
* oz

and the defining equations for the shearing strains are

a b
ou , Ow
Vo= az+bx - (A2)
_Ov, 0w
=3z’ . oy J

The deﬁmng equation for the rotamon (reference 8,
p. 162} is
v bu

The assumption that the strains and rotation are constant
in the direction of the z-axis (axis of the cylinder) permits
writing

D¢, Oey 06, OYry OVe OV Ow 0

0z Oz 0z dz 0Oz 0Oz 0z (A4)

The conditions that the strains be compatible with dis-
placements specified by u, v, and w are (reference 8, p. 196)

0%, +b’ _ Oy A
>y oz ozdy
0%, , 0%, Oy
bz’+ ~oyoz
a’e,_l_a e O%ya
oz "9z 0z0z
- (A5)
5: ( a'Yw a'Yn b'va)
dydz Zb:c oz
O%, 1 0 (07 0% b'yn;)
oxdz 20y \dz Oy ' Oz
0% 10 (0, OYn 07,,)"
dzdy 20z \dz ' Oy z J
From equations (A3) and (A4), equations (A5) become
Dey Ve, Dy
oy ' dx? Oxdy
0%,
3y Y
0%,
bx’_o
” > (A6)
€r __
bybz_o
D%y _
220z
0%,
20y 0 J
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The first of equations (A6) remains, swhereas the fourth
and fifth of equations (A6) vanish identically. The second,
third, and sixth of equations (A6) may be written

ow  dw  dw
oy*dz dxz 0xdyd:z

0 (A7)

Because of the assumption that plane sections initially
normal to the axis of the eylinder remain plane after the
deformation, the displacement in the z-direction may be
written

w= f(2)x + g(z)y+h(z)

showing that equations (A7) vanish identically. The pre--

ceding proof that the last five of equations (A6) vanish
identically is essentially a demonstration that these com-
patibility conditions are satisfied as & consequence of the
initial assumptions. Of equations (A6), the only nonvanish-
ing equation is now the compatibility condition

0%, , 0%,

o€ —_ Oz
oy ' ox?

oxdy

(A8)

The generalized Hooke’s law equations (reference 8, p. 204)
are

e;=% [ee— v(a',-[-v,)]-l—aT\

Equations (A10) and (2) are used with the direct method of
calculating thermal stresses; that is, the equilibrium, bound-
ary, and compatibility conditions are used without regarding
temperature terms as body and surface forces. The equilib-
rium equations (reference 8, p. 195) are therefore written
without body forces. These equations were reduced to
those of reference 8, page 21, by using the assumption that
plane sections initially normal to the axis of the cylinder
remain plane after the deformation, so that

L

0Ty
2z T oy 0

oy
(A11)
ba’,_l_ 0 Tn

Substitution of expressions (2) in equations (A11) shows
that the stress function has been defined so as to satisfy
the equilibrium equations identically. The condition re-
maining to be satisfied by ¢ is the compatibility condition

(A8). Substitution of expressions (2) in equations (A10)
yields :
&= g;: vg::.s_, P2V2¢—VEEZ)+(}.+P)QT
(A12)
0% a%

=g (35—» Sarvio—vEe )+ tn)aT

e,=-;;:.- lo,—v(o:t o)l +aT > (A9)
The shearing strain is expressed (reference 8, p. 10) in
e’=_lli'_ [es—w(ost o)+l terms of the shearing stress by
’ 2014
Elimination of o, between these equations yields Y= b
1 =_2(1+”) 0% (A13)
=% [(1—»®or—r(1 +9)o,+H{(1+v)aET—yEe] E dzdy
' A10 i
1 (&.10) By use of equations (A8), (A12}, and (A13), equation (A8)
&=F [(1—»ey—r(1+»)o+H (1 +3)aET—pEe,] can be written
Airy’s stress function is defined by V*¢—-— aE V’T
—a‘.'qs N
oyt For the assumed temperature conditions,
0* V=0
=y :; - (2)
3 and hence the governing equation for ¢ is
__ 9%
=" 30y J Vi¢=0 @
APPENDIX B

CALCULATION OF AXJAL STRESS

After o, and o, have been calculated according to equation
(2), the normal stress o, in the axial direction may be deter-
mined. The third of equations (A9) is

©&= E [e:—v(oet o]+ T

from which
=, E+v(o;teo)—aET B1)
As stated in the section assumptions, the cylinder is
free from applied forces and therefore the total force in the
axial direction and the z- and y-components of a bending
couple are zero.
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-
ff srdzdy=0
A
ff z e de dy=0
A
ff Yo, dedy=0
4 J

Because assumptions numbers 6 and 7 in the section
AssuMPTIONS, the strain in the z-direction may be written

e;=az+by+c (B3}

Y

(B2)

where @, 4, and ¢ are constants.
Substitution of expressions given by equations (B1) and
(B3) in equations (B2) gives

afodxdy+bffAydx dy—i—cffAd:cdy ]

—— 1 f L [W(osto)—aETldz dy

asz’dxd:q-l—bfLmydzdy-{-cha:d:cdy

=_% f fAz[y(a-,—{—zr,)—aET]dxdy

2
a\[Lzydz dy+ bffAy dmdy+cfj;yd:c dy

=—%f ) ylv(oeto)—a ET|dzdy

r (B4)

Equations (B4) are three simultaneous equations from

which the constants e, b, and ¢ may be evaluated. Substitu-
tion of the expression for e, given in equation (B3) for ¢, in
equation (B1) gives o - e .

a.=E(az+by+c)+vioeto)—a ET (3)

from which the axial stresses may be determined.
If the origin of the coordinate axes is taken at the center
of gravity of the cross section,

szdx d'y=ff‘4y-da: dy=0 (B5)

and in any case,
f L dzdy=4 (B6)
where A is the area of the cross section.

Where sufficient symmetry is present, the orientation of
the principal axes of inertia can often be determined by
ingpection. A method of determining the principal axes and
principal moments of inertia for arbitrarily shaped areas
is presented in reference 14. If the orientation of the co-
ordinate axes is chosen so it coincides with that of the prin-
cipal axes, then

fL yidz dy=I, ®7)
J‘L rydzdy=0 (B8}
f L 2 dzdy=1I, (BY)

where I, is the moment of inertia about the x-axis, and 7, is
the moment of inertia about the y-axis. Simplification of

equations (B4) using equations (B5), (B6), (B7), (BS8),
and (B9) furnishes explicit solutions for a, b, and ¢ as follows:

F‘ﬁ f Lx [v(0s+ o) —a ET}dz dy

b=._ELI= f fAy[y(o-,-{-a',)—aET]d.’t dy > (B10)

c=—711—E— L [v(ozto)—a ET)dzdy

o

Substitution of equations (10) in equation (3) gives

oy=v(6s+o)—aET— o

% fL z[v(oeto)—a ETIdz dy—
ll'z fL y[v(orto)—aET|dxdy—

” J'L v (est o) — a ET]dz dy ®B11)

APPENDIX C

DETAILS OF RELAXATION CALCULATION OF TANGENTIAL STRESS IN CONCENTRIC CYLINDER WITH
ASYMMETRIC TEMPERATURE DISTRIBUTION

The temperature distribution was assumed to be deter-
mined by temperatures in degrees Fahrenheit of zero on
the internal boundary of 4-inch radius and 500--1000 cos ¢
on the external boundary of 12-inch radius. The values of
the elastic constants were assumed to be

@=8.0X10™* (in./in./°F)
E=175X10% (Ib/sqin.)

»=0.3

The results of the relaxation caleulation for the tempera-
ture distribution according to the technique deseribed in
reference 11 is presented in figure 1. In all calculations,
the origin of coordinates was located at the center of the
cylinder. In the present case (one internal boundary),
the indices of equations (21), (22), (23), and (24) become.
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1‘=k=n=1
j=1,2,3
In order to eliminate the use of decimals in the work of

relaxation, equations (21), (22), (23), and (24) were modi-
fied as follows:

On the exterior boundary,

., _Odu_O¢n Odr__
dn=0¢n=0on 3n _on_ on =0

On the interior boundary,

_ du_ -0 dy
¢11—250 x n =250 ds
_ Od1z dx
' o)
13=1000 P

The boundary-value problems just defined for the bihar-
monic functions ¢y, ¢, and ¢;; were then solved by the
techniques of references 7 and 11 to yield the solutions
presented in figures 2 to 4. (The dimensions of the cylinder
were such that the distance between nodal points could be
conveniently taken as 1 inch. For more general cases a
method of handling dimensions, nodal distances, and
derivatives, such as described in reference 7, can be followed.)

The next step is to calculate the values of the constants
Ay, €2, and @3 according to equations (26), (27), and (28).

To that end, the appropriate contour integrals were caleu-
lated as illustrated for functions involving ¢y and T along
path ¢ in table I. The numbering system for points in
the tables corresponds to the numbering system exhibited
by the small diagram in figure 2, where j is the station along
the path of integration and j=1 on the positive r-axis.

With the use of averages of contour integrals for paths
a, b, and ¢, the simultaneous equations (26), (27), end (28}
become

1241.3 013=_200X2853

8466.3 a;3=0
8466.3 @ =—2003£9532.3
from which
a; = —459.7
ap=0

an= —225.2
According to equation (20),

d=au én+0are b2t d13
from which
=—225.2 ¢,;—459.7 ¢3

The solution of this equation for points along the positive
z-axis (#=0°) is presented in table II. Tangential stresses
were calculated from the relaxation solution for the stress
funetion by taking second derivatives with respect to radius
according to the formulas of appendix D. These results
are also presented in table IT,

APPENDIX D

NUMERICAL DIFFERENTIATION OF AIRY’S STRESS FUNCTION

The purpose of this section is to present the methods used
in approximating to the second derivatives of Airy’s stress
function. The function to be differentiated is expressed by

y=f()

where in the present application y is Airy's stress function
and r is radial distance on a cross section of the hollow con-
eentric cylinder. Where p is an integer, & is a uniform tabular
interval of the independent variable, and z, is an arbitrary
point from which the distance pk is measured, let

(D)

The values of second derivatives were calculated by the
five-point formulas of reference 12. For the various values
of p, these formulas are: With p=0,

r,=x5+ph

. 1
Dyo=157:(35¥0—104y,+ 114y,— 56y, +11y) (D2)

with p=1,

D=1 (119— 20y, +6y:t dys—yd  (D3)

with p=2,
D”yz=1—21h—g(—yo+ 18y,—30y.+16y;—ysd (DY)

with p=3,
Dyy= o (— %ot 4puH6y,— 203+ 113) (DY)

with p=4,
. 1
D'y4=m‘z(1 1yo—56y,+114y,—104y;+35y0 (D6)

Equation (D2) was used to calculate derivatives at r=4,
equation (D3) was used for r=>35, equation (D4) was used for
r=6 to 10, equation (D5) was used for r=11, and equation
(D6) was used for r=12. '
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APPENDIX E

EXACT DETERMINATION OF_STRESSES FOR CONCENTRIC CYLINDER WITH ASYMMETRIC
TEMPERATURE DISTRIBUTION

The radial and tengential stresses, respectively, in the case
of a symmetrical temperature distribution are given in refer-
ence 8 on page 372 by

- “‘“’fj’;n N
— aET, [1 a? <1+E ]_né:l E1)
—9)lo 2 2l n b—a?\" "7/ "a

where a is the radius of the internal boundary and & is the
radius of the external boundary, and where T is the excess
of the inner boundary temperature over the temperature of
the external boundary.

From reference 4, the stresses in a concentric circular
cylinder possessing the temperature distribution

T=An r+Ao+“21(Anr"—l-O,‘r"‘) cos né+

(—Bur*+D,r~") sin né (E2)
where 4, B, C, and D are constants, are
_ aE A [1 a,2 b"’_rl b] ~
e { e S
3 p2)(p2
[ E =] om0+ Dosi
- (E3)

aEA)I:l b @ bitr 9_1:,_

i P rTr g

,:4«12;-2 @ri—b9(r2+a?
2(1_,) (@F b

](0’1 cos 6+D; sin 6)

The temperature distribution in °F is specified by 7'=0 on
the internal boundary and by T=500+1000 cos 6 on the ex-
ternal boundary. The stresses will be calculated by super-
posing stresses for a symmetrical temperature distribution
on those calculated for a special asymmetrical distribution.
The given temperature distribution is resolved into two com-
ponents: a symmetrical component defined by 7'=0 on the
interior boundary and 7'=>500 on the exterior boundary; and
the special asymmetrical component defined by boundary
temperatures of T'=0 on the interior boundary and 7'=1000
cos 8 on the exterior boundary.

The stresses calculated for the symmetrical component of
the temperature distribution were calculated according to

equations (E1).

Now. equation (E2) is to be wrillen so as to satisfy the
boundary conditions on the asymmetrical component of the
temperature distribution. The boundary conditions are

at r=a T=0
at r=b T=1000 cos 6
In order to satisfy these conditions and equation (E32), let
n=1
A=Ay=B,=D,=0 (E4)

Equation (E2) is thereby reduced to

T=<A1r+—%) cos 6
On r=a,
G
0= A1a+z cos 6
from which
| A=
On r=35,
1000 cos (i=<Alb+%1 cos @

from which

Alb-i-——lOOO
or
Clb-i—-—-—lOOO
or
at—b? o
Ci~—g5—=1000
from which
0__1000:1’6

Use of equations (F4) and of the preceding value of €} in
equations (E3) shows that the components of stress due
only to the temperature distribution specified by T=0 on
r=a and T=1000 cos § on r=>4 are

1000 a& a2b (b*—r?) (r*—a?)

gr= 2(1 _V) 7 bl___ali cos 6 .
_1000aF o% sar'—@r—t9(i+ay [
7e= 2(1—») 1@ b*—a* 08

Radial and tangential stresses were superposed from
stressescalculated according to equations (1) and (E5) to
give the exact sfresses listed in table II.
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APPENDIX F

DETAILS OF RELAXATION CALCULATION OF TANGENTIAL STRESS IN CONCENTRIC CYLINDER WITH SYMMETRICAL
TEMPERATURE DISTRIBUTION

The temperature distribution was assumed to be deter-
mined by temperatures of 0° F on the internal boundary of
4-inch radius and 500° F on the external boundary of 12-
ineh radius. The relaxation solution for the temperature
distribution is given in figure 6. The values of the elastic
constants were assumed to be the same as those used in
appendix C, namely,

a=38.0X107¢ (in./in./°F)
E=17.5%X10° (Ib/sq in.)
r=0.3

As in the asymmetrical case treated in appendix C, the
indices of equations (21) to (24) were taken as

i=k=n=1
7=1,2,3

and these equations were modified as follows:
On the exterior boundary,

o] o] 0
on=dr==03= aqbrzl :;2 ::_0

On the interior boundary,
“n Y
250 7¢

Odu

q511=2503.’ W=

. 39512__ d_{
$u=250y  Si——250
>

$1a=1000 %=0

These boundary values are the same as those used for the
preceding problem involving the asymmetrical temperature
distribution. The biharmonic functions ¢, ¢z, and ¢;; are
presented in figures 2 to 4. Calculation of the contour
integrals by the methods described in appendix C and
solution of equations (26) to (28) show that

an=a;;=0

and that the values of a;3 for paths g, b, and ¢ are as given in
table III. The values of Airy’s stress function as determined
entirely by the numerical method were then calculated
using the relaxation values of ¢;; and the average of a;; for
paths g, b, and ¢ according to

d=a;; hi3

Values so calculated are presented in table IV. Tangential
stresses were calculated from the relaxation solution for the
stress function by taking second derivatives with respect to
radius according to the formulas of appendix D. These
results are also presented in table IV.

APPENDIX G

EXACT DETERMINATION OF AIRY’S STRESS FUNCTION FOR CONCENTRIC CYLINDER WITH SYMMETRICAL
TEMPERATURE DISTRIBUTION

The purpose of this section is to present the formula used
in calculating Airy’s stress function for the concentrie circular
cylinder with e symmetrical temperature distribution. A
possible form for the stress function is given in reference 8
on page 55 as

¢=dA In r+Br*In r+Cr3+D (G1)
where A, B, (, and D are constants and the corresponding
stress components are given by
o',=-;—-1;+B(l +2InP+2C
1 (G2)
a.=—ﬁ—i—B(3+2 In r)42¢C

The thermal stresses are given by equations (E1). For
comparison with the first of equations (G2), the first of
equations (E1) is written

__[_aET, a%* | b1
Lan 2 2 2
2(1—7)111%6 B

——aE—T‘—%-(l—[—Zlnr)—l-
2(1—v)1na"

aETi 1 a? b
— = —=—In b—m—73 -~

Comparison of equation (G3) with the first of equations
(G2) shows that necessary conditions on the constants of
equation (G1) are

A: C!ETi b b‘:z_bjzz ID _é
2(1—11)1115
_B—‘ aETi 1
- b2
2(1—7)InE-
BTy 1/ 1 o b
g a



88

Because the siresses are caleulated from derivatives of
Airy’s stress function, the value of the constant D in equa-
tion (G1) may be taken arbitrarily. The values of 4, B, and
C as just determined are substituted in equation (G1) to
obtain
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BT [ 1o b 1. @ (1 ., b '
¢—m. 5" Inr i b’—a’(2 6%In r)lna +D
a

(G4)
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TABLE I—CONTOUR INTEGRALS ALONG PATH ¢
(a) Integrals Involving vi¢m

dvig; . ovie; dVi; ovie, avié;
1, —_ x z —_
o || Vet | s s on T ¥ [ TTom

0 | —e | -0 7 5.5 0 | w00 0 a 0

10 —81 —108 4 8.5 550 132.Q 1 10.0 24.0
-3 | -8 | -2 5 55 | 165 | 3245 2 | g0 | uso
a | - | S 5% &5 | ns5 | s 3 6.0 | 160
% | -8 —92 a1 55 | 1540 | 2255 | m20| a0
% | -2 —59 a8 55 | 1540 | 1815 5| 0.0 | 1660
-8 | -7 -5 a2 § | -118.0 | 180.0 55 | —126.5 | 178.0
14 | —a2 —82 4 4| o | 1600 55 | —T.0 | 2.0
2 | —a o2 53 3 6.0 | 1200 41 Lo | =65

% | —48 —78 30 2 520 | 60.0 55 | 130 | 1850
2% | -—18 “1 1 1 2.0 1.0 55 | 1.5 5.5
18 0 0 0 0 0 0 5.5 9.0 0
20 18 19 -1 -1 | -20 1.0 &5 | 105 | -8
% g 7 | -8 Z2 1 —smo | teno 55 | 143.0 | —1650

2 %9 02 | -1 =3 | =60 | 120 &5 1L0 | —2:8.5
—1 2 g2 | —i0 —4 56.0 | 160.0 &5 | —mo | —a20.0
—z 7 8 | -s2 =5 | 5o | 1800 5.5 | —1206 | —178.0
2 28 @ | —88 | —&5 | -0 | 186 5 | T1i00 | “ieso
2 81 92 | —a | —&5 | -1840 | 2.8 ] 120 | —eco
2t 7 27 | —e8 | =58 | -116.5 | 308.0 g ®3.0 | ~108.0
-3 83 12 | % | —&8 165 | 8205 2| -&o0 ! Z1go
10 81 108 | —4 | —55 | —ss0 | 1820 1 100 | —24.0

0 06 m | -7 | -&s5 o | w70 0 0 0
-10 81 105 | —2 | —&6 8.0 | 1320 -1 10.0 24.0
3 ] 42 | —s0 | -55 | -85 | 3248 -2} -=go | ugo
-2 7 127 | s | -&s | 185 | soso -3 &0 | 1m0
-2 51 92 | —41 | Zgs | 1o | 288 —4 | 10 | 1840
-2 26 s | —» | -&5 | 1840 | lsvs 5 | 0.0 | .1650
7 77 8 | -—83 =5 | -0 | 1600 | -85 | —1285 | 1760
14 12 82 | —40 Zo ! o | 00 | ~&8 | -mo | 200
=3 49 2 | -4 -3 60 | 120 | —85 o | =:ws
-2 43 B -0 | -3 520 | 6o | —56 | 30 | 1860
—29 18 19 -1 -1 2.0 10 | —58 | 150.5 5.5
—18 0 0 0 0 ¢ o | -58 9.0 0
-2 | -1 -1 1| 1| -0 10 | —bs | 15| -85
% | -3 -3 a0 2 | —eo | eo | —&s| 1m0 | -iso
-2 | —ap —82 a3 3| —60| 290 | &5 1.0 | -236.5
1 | —a —83 4 s 860 | 7600 | —55 | —770 | ~220.0
3 | -z -t 22 §| ubo.| 8RO | —&8 | —1265 | ~176.0
-3 | -2 —50 3 85 | —1540 | 1815 =5 | o0 | —leso
—3 | -A —g2 4 E5 | —1540 | 2.5 — | 120 | —leto
= | S| - 56 £5 | —1155 | 3080 -3 6.0 | ~1080
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TABLE I-CONTOUR INTEGRALS ALONG PATH ¢—Concluded
(b} Integrals Involving T

f
T, G | r aTy ar 3T a7 aT
| 1 Top | "1 | & 3 [T} | H = o T ¥ i o=,
&7 ] 491 286 25 3§ 1] LXB7.5 ] 0 a
™7 3t 504 286 28 a5 I70.5 1,190.0 1 3La 218.0
418 5t 540 34 % &5 I8 1,089.0 2 0 396.0
12 67 502 416 176 8.5 388§ 068 0 3 21.0 528.0
539 n 52 196 136 5.5 385.0 8580 1 280.0 624.0
609 g 14 573 4 &5 30k, § 7755 5 335.0 5.0
56 —132 645 563 T2 & —860.0 350.0 &8 —725.0 3%6.0
54 —122 522 438 a4t 4 —4i58.0 336.0 &85 —810 142 0
422 —10% 411 3i6 9% 3 —321.0 2550 &5 ~B588. 5 52.5
318 —87 e 216 100 2 —17+ 0 200.0 5.5 —478. % 550. 0
8 —02 29 43 26 1 —82.0 200 %3 —341.0 528.0
1686 —43 181 og 82 Q 1] a &5 —26.3 45L.0
123 - B3y T4 63 —1 3.0 —8.0 3.5 —181..5 8.5
90 =31 5] 53 415 -3 820 —90.0 58 —170. 5 25.5
& —o7 B 26 32 -3 11L 0 —96.0 a5 —208. 5 176.0
22 —H 13 —~10 23 —& 1380 —02.0 &S —HM2.0 1245
—-22 —49 —36 —5¢ 18 —5 215.0 —90.0 &8 —268.5 0.0
-7 —14 -105 -5 —51 —-&5 0 280.5 E -0 —2355.0
—85 -9 —115 —6i —48 -5 5 0.5 264.0 4 —36.0 —1920
—01 -3 —121 —72 —49 —&.5 18.§ 260.6 3 -2.0 —147.0
-9 1 —123 -7 -5 —a.5 —5.& 28.0 1 0 —I104.0
-85 3 —122 -85 —& 43 —16.5 308.0 )3 30 —56.0
-03 [ - —63 38 —3.5 (1] 318.0 43 1]
-3 -3 —122 —68 —56 ~&6 168.6 5.0 -1 L0 56.0
] -1 -123 —7 —52 -&5 85 236.0 —2 20 104
-9 3 —121 —72 —49 —5.5 —16.5 269.5 -3 —0.9 147.0
-3 '] -115 —67 —48 55 —49.5 264.0 —4 —36.0 192.0
—85 1t —105 —5 =51 —a. 5 —-77.0 0.5 —3& —0.0 250
—1 49 —36 —54 13 -5 —2154Q —9%0.0 —-3§ -209.5 —%.0 |
-2 4 13 —10 23 —4 -—176.0 —-g2.0 —-55 —212.0 —I126.5
22 37 15 Y- 32 -3 —11L0 —08.0 —&5 —203.5 —15.0
8 31 24 5 45 —2 —82.0 —80.0 —&5 —170. 8 —247.5
90 33 137 7 <] -1 —33.0 —8.0 =53 —18L 5 —346.5
12 43 181 9 2 1] 0 -5 & —36.5 —45L.0
168 82 143 96 1 620 08.0 -3 5 —M1.0 —G628.0
225 87 316 216 0 2 1740 200.0 -4 & —£8.3 —550. 0
315 itrg 411 316 451 3 [ 285.0 —45.5 —386. 5 —522. 5
422 122 522 43% 8t 4 158.0 3358.0 =465 —-f7L0 —182.0
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TABLE II—STRESS ALONG POSITIVE X-AXIS IN CON- TABLE ITI—VALUES OF a3 AND ASSOCIATED ERRORS
CENTRIC CIRCULAR CYLINDER WITH ASYMMETRI- T
CAL TEMPERATURE DISTRIBUTION
: - Exa o |
: Reluxatfon m‘;’f 5‘;;-‘*)*5 | Errorsin
Radius [ Stress | tangentfal Sq . | relaxation
tin.y function siress —1 stress
! (ibsy In.) Radial ! Tangent (Ibsq in.)
- 1) et | 1202 o] mess | —-se
i 3 —652, 832 6%, 259 18,126 63, 500 —4, 61L
[ —554, 142 25, 558 22, 132 35, 409 —9 851
7 | —a25 361 230 | 20,08 11,873 —g,305
Q —209, 823 —11,372 17,633 -8 257 095
9 | —182207 | -85 | 13,496 | —20.74 3,074 .,
: 10 —88, 5% —az, 635 9,013 —32, —204
! 11 —26, 1) —33, 852 £ 473 —43, H2 —7, 880
i 12 0 —33, 617 1] —053, 012 —14,395
= Pysitive slims denote relaxatfon values larger In absolute mugnitude
than exact values: negative signs denote relaxation values smaller in

ahsolute magnitude than exact values.

TABLE IV—NUMERICALLY CALCULATED STRESSES AND ASSOCIATED ERRORS FOR CONCENTRIC CYLINDER WITH
SYMMETRICAL TEMPERATURE DISTRIBUTIOXN

) 1
| Five-point method for t Five-polnt method for Flve-point method for

: : y entink stress using tangential stress nsing tangential stress neing
' Exnet ‘?1' R‘_eélnmt[o? Emctof I:r}. tion values uf cxact values of Alry’y Alry’s function exact to
Rudius u_\g!ﬂs M‘f;g ugnm - Alry’s streds funetion stress function three ﬁﬁ:m
(in) . Stress " stress stross (lb/sq in.) (b/sq In.) (Ibfsq In)
unction function (Ibsq in.) -

Btress Error » Stress Error = Stress Error »

4 —167, 027 —485, 100 66,938 81, 357 14,369 62, 620 —4 368 60, 600 -6, 100

5 —430,879 | —438 1% 36, 562 42,26 5 704 35,980 67 a6, 600 a

6 —374, 651 —367, 504 17, 24 14, 544 —2 440 17, 254 —30 17, 000 300

7 —201, 678’ —283,851 3,638 —62 —4, 254 3 620 - 3, 800 200

g —a204, 799 —I95, 87 —8, 746 —8, 419 1,73 —8, 766 20 —7, %0 800

5 —124, 507 —118, 135 —15,058 —15,089 911 —15,05¢ —4 —14, 500 —L 3w

16 —89, 152 —586, L7 —2L §H —21, 588 —376 —21, 965 1 —a4, 10 1, 400

1 —15, &7 —15 8i3 27, 864 —2%, 845 -3,019 -2, 883 19 =27, 100 —500

12 [} [} =33, 012 —35, T80 -7, 232 —32, 776 -8 —26, 100 -6, 600

s Prsitive quantities denote approxlmate values Isrger in absolute magnitude than exset values; negative quantities denote ap-
proximate values smaller fn sbsolute magnitude than exact values,
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